Index
Alle Klassen und Schnittstellen|Alle Packages|Serialisierte Form
A
- AbstractAugmentation - Klasse in de.edux.augmentation.core
-
Abstract class for augmentation operations.
- AbstractAugmentation() - Konstruktor für Klasse de.edux.augmentation.core.AbstractAugmentation
- ActivationFunction - Enum-Klasse in de.edux.functions.activation
-
Enumerates common activation functions used in neural networks and similar machine learning architectures.
- addAugmentation(AbstractAugmentation) - Methode in Klasse de.edux.augmentation.core.AugmentationBuilder
-
Adds an augmentation to the sequence.
- addMatrices(double[][], double[][]) - Methode in Schnittstelle de.edux.util.math.MatrixOperations
-
Adds two matrices and returns the resulting matrix.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.core.AbstractAugmentation
-
Applies the augmentation to an image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.BlurAugmentation
-
Applies a Gaussian blur augmentation to the provided image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.BrightnessAugmentation
-
Loop through each image pixel and multiply the pixel value by the brightness value
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.ColorEqualizationAugmentation
-
Applies color equalization to the provided image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.ContrastAugmentation
-
Applies contrast enhancement to the provided image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.CroppingAugmentation
-
Applies a cropping augmentation to the provided image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.ElasticTransformationAugmentation
-
Applies the elastic transformation to the provided image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.FlippingAugmentation
-
Applies a random flip augmentation to the provided image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.MonochromeAugmentation
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.NoiseInjectionAugmentation
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.PerspectiveTransformationsAugmentation
-
Applies the affine transformation to the provided image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.RandomDeleteAugmentation
-
Applies the random delete operation to the given image.
- apply(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.ResizeAugmentation
-
Resizes the given image to the target width and height which are either specified during the instantiation or computed based on the scaleFactor.
- applyTo(BufferedImage) - Methode in Schnittstelle de.edux.augmentation.core.AugmentationSequence
-
Applies the augmentation sequence to a single image.
- applyTo(BufferedImage) - Methode in Klasse de.edux.augmentation.core.CompositeAugmentationSequence
- AugmentationBuilder - Klasse in de.edux.augmentation.core
-
Builder class for creating an augmentation sequence.
- AugmentationBuilder() - Konstruktor für Klasse de.edux.augmentation.core.AugmentationBuilder
- AugmentationImageReader - Klasse in de.edux.augmentation.io
-
Implementation of
IAugmentationImageReader
to read image paths from a specified directory. - AugmentationImageReader() - Konstruktor für Klasse de.edux.augmentation.io.AugmentationImageReader
- AugmentationSequence - Schnittstelle in de.edux.augmentation.core
-
Defines a sequence of image augmentation operations.
- AVERAGE - Enum-Konstante in Enum-Klasse de.edux.functions.imputation.ImputationStrategy
-
Imputation strategy that replaces missing values with the average of the non-missing values in the dataset column.
- AverageImputation - Klasse in de.edux.functions.imputation
-
Implements the
IImputationStrategy
interface to provide an average value imputation. - AverageImputation() - Konstruktor für Klasse de.edux.functions.imputation.AverageImputation
B
- backpropagate(double[], double) - Methode in Schnittstelle de.edux.ml.nn.network.api.IPerceptron
- BALANCED - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.ResizeQuality
- BINARY_CROSS_ENTROPY - Enum-Konstante in Enum-Klasse de.edux.functions.loss.LossFunction
- BlurAugmentation - Klasse in de.edux.augmentation.effects
-
This class provides an augmentation that applies a Gaussian blur to an image.
- BlurAugmentation(float) - Konstruktor für Klasse de.edux.augmentation.effects.BlurAugmentation
-
Initializes a new instance of the BlurAugmentation class with the specified blur radius.
- BOTTOM_LEFT_CORNER_TILT - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- BOTTOM_RIGHT_CORNER_TILT - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- BOTTOM_TILT - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- BrightnessAugmentation - Klasse in de.edux.augmentation.effects
-
This augmentation technique adjusts an image's brightness value by a specified amount
- BrightnessAugmentation(double) - Konstruktor für Klasse de.edux.augmentation.effects.BrightnessAugmentation
-
Initialize the class with a double value between -1 and 1 indicating the brightness factor to be applied A value greater than 0 will increase brightness A value lower than 0 will decrease brightness
- build() - Methode in Klasse de.edux.augmentation.core.AugmentationBuilder
-
Builds the final Augmentation sequence from the added operations.
C
- calculateActivation(double) - Methode in Enum-Klasse de.edux.functions.activation.ActivationFunction
- calculateActivation(double[]) - Methode in Enum-Klasse de.edux.functions.activation.ActivationFunction
- calculateDerivative(double) - Methode in Enum-Klasse de.edux.functions.activation.ActivationFunction
- calculateError(double) - Methode in Schnittstelle de.edux.ml.nn.network.api.INeuron
- calculateError(double[], double[]) - Methode in Enum-Klasse de.edux.functions.loss.LossFunction
- calculateOutput(double[]) - Methode in Schnittstelle de.edux.ml.nn.network.api.INeuron
- CATEGORICAL_CROSS_ENTROPY - Enum-Konstante in Enum-Klasse de.edux.functions.loss.LossFunction
- Classifier - Schnittstelle in de.edux.api
-
Provides a common interface for machine learning classifiers within the Edux API.
- ColorEqualizationAugmentation - Klasse in de.edux.augmentation.effects
-
This class implements an augmentation that applies color equalization to an image.
- ColorEqualizationAugmentation() - Konstruktor für Klasse de.edux.augmentation.effects.ColorEqualizationAugmentation
- CompositeAugmentationSequence - Klasse in de.edux.augmentation.core
-
Composite augmentation that applies a sequence of augmentations.
- CompositeAugmentationSequence(List<AbstractAugmentation>) - Konstruktor für Klasse de.edux.augmentation.core.CompositeAugmentationSequence
- ConcurrentMatrixMultiplication - Schnittstelle in de.edux.util.math
- ContrastAugmentation - Klasse in de.edux.augmentation.effects
-
This class enhances the contrast of an image.
- ContrastAugmentation(float) - Konstruktor für Klasse de.edux.augmentation.effects.ContrastAugmentation
-
Initializes a new instance of the ContrastAugmentation class with the specified contrast factor.
- convert2DLabelArrayTo1DLabelArray(double[][]) - Statische Methode in Klasse de.edux.util.LabelDimensionConverter
- CroppingAugmentation - Klasse in de.edux.augmentation.effects
-
This class provides an augmentation that crops an image based on a specified factor.
- CroppingAugmentation(float) - Konstruktor für Klasse de.edux.augmentation.effects.CroppingAugmentation
-
Constructs a CroppingAugmentation with a specified crop factor.
- CSVIDataReader - Klasse in de.edux.data.reader
- CSVIDataReader() - Konstruktor für Klasse de.edux.data.reader.CSVIDataReader
- CUDAKernelUser - Schnittstelle in de.edux.core.math.matrix.cuda
- CudaMatrixArithmetic - Klasse in de.edux.core.math.matrix.cuda
- CudaMatrixArithmetic() - Konstruktor für Klasse de.edux.core.math.matrix.cuda.CudaMatrixArithmetic
- CudaMatrixProduct - Klasse in de.edux.core.math.matrix.cuda.operations
- CudaMatrixProduct() - Konstruktor für Klasse de.edux.core.math.matrix.cuda.operations.CudaMatrixProduct
- CudaMatrixVectorProduct - Klasse in de.edux.core.math.matrix.cuda.operations
- CudaMatrixVectorProduct() - Konstruktor für Klasse de.edux.core.math.matrix.cuda.operations.CudaMatrixVectorProduct
- CudaNotAvailableException - Ausnahmeklasse in de.edux.core.math.matrix.cuda.exceptions
- CudaNotAvailableException(String) - Konstruktor für Ausnahmeklasse de.edux.core.math.matrix.cuda.exceptions.CudaNotAvailableException
D
- Dataloader - Schnittstelle in de.edux.data.provider
-
The
Dataloader
interface defines a method for loading datasets from CSV files. - DataNormalizer - Klasse in de.edux.data.provider
- DataNormalizer() - Konstruktor für Klasse de.edux.data.provider.DataNormalizer
- DataPostProcessor - Schnittstelle in de.edux.data.provider
-
The
DataPostProcessor
interface defines a set of methods for post-processing data. - DataProcessor - Klasse in de.edux.data.provider
- DataProcessor(IDataReader) - Konstruktor für Klasse de.edux.data.provider.DataProcessor
- Dataset<T> - Datensatzklasse in de.edux.ml.nn.network.api
- Dataset - Schnittstelle in de.edux.data.provider
- Dataset(List<T>, List<T>) - Konstruktor für Datensatzklasse de.edux.ml.nn.network.api.Dataset
-
Erstellt eine Instanz einer Datensatzklasse
Dataset
. - de.edux.api - Package de.edux.api
- de.edux.augmentation.core - Package de.edux.augmentation.core
-
Core functionalities for image augmentation in the Edux framework.
- de.edux.augmentation.effects - Package de.edux.augmentation.effects
-
This package contains classes that perform various image augmentation effects.
- de.edux.augmentation.effects.geomentry - Package de.edux.augmentation.effects.geomentry
-
Provides perspective transformation effects that can be applied to images.
- de.edux.augmentation.io - Package de.edux.augmentation.io
-
Provides classes and interfaces for reading and handling image data for augmentation processes.
- de.edux.core.math - Package de.edux.core.math
- de.edux.core.math.matrix.cuda - Package de.edux.core.math.matrix.cuda
- de.edux.core.math.matrix.cuda.exceptions - Package de.edux.core.math.matrix.cuda.exceptions
- de.edux.core.math.matrix.cuda.operations - Package de.edux.core.math.matrix.cuda.operations
- de.edux.core.math.matrix.parallel - Package de.edux.core.math.matrix.parallel
- de.edux.core.math.matrix.parallel.operations - Package de.edux.core.math.matrix.parallel.operations
- de.edux.data.provider - Package de.edux.data.provider
- de.edux.data.reader - Package de.edux.data.reader
- de.edux.functions.activation - Package de.edux.functions.activation
-
Provides the classes necessary to define various activation functions used in neural networks.
- de.edux.functions.imputation - Package de.edux.functions.imputation
- de.edux.functions.initialization - Package de.edux.functions.initialization
- de.edux.functions.loss - Package de.edux.functions.loss
- de.edux.ml.decisiontree - Package de.edux.ml.decisiontree
-
Decision tree implementation.
- de.edux.ml.knn - Package de.edux.ml.knn
-
Provides the classes necessary for implementing the k-Nearest Neighbors (KNN) algorithm in machine learning.
- de.edux.ml.nn.config - Package de.edux.ml.nn.config
-
Classes for the configuration of the neural network.
- de.edux.ml.nn.network - Package de.edux.ml.nn.network
- de.edux.ml.nn.network.api - Package de.edux.ml.nn.network.api
- de.edux.ml.randomforest - Package de.edux.ml.randomforest
-
Random Forest implementation.
- de.edux.ml.svm - Package de.edux.ml.svm
-
Support Vector Machine (SVM) implementation.
- de.edux.util - Package de.edux.util
- de.edux.util.math - Package de.edux.util.math
- DecisionTree - Klasse in de.edux.ml.decisiontree
-
A Decision Tree classifier for predictive modeling.
- DecisionTree(int, int, int, int) - Konstruktor für Klasse de.edux.ml.decisiontree.DecisionTree
- determinant(double[][]) - Methode in Schnittstelle de.edux.util.math.MatrixOperations
-
Calculates and returns the determinant of the given matrix.
E
- ElasticTransformationAugmentation - Klasse in de.edux.augmentation.effects
-
Applies an elastic transformation to an image, simulating natural distortions.
- ElasticTransformationAugmentation(double, double) - Konstruktor für Klasse de.edux.augmentation.effects.ElasticTransformationAugmentation
-
Constructs an ElasticTransformationAugmentation instance with the given parameters.
- epochs() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
epochs
zurück. - equals(Object) - Methode in Datensatzklasse de.edux.augmentation.io.ImageWithName
-
Gibt an, ob ein anderes Objekt diesem gleich ("equal to") ist.
- equals(Object) - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt an, ob ein anderes Objekt diesem gleich ("equal to") ist.
- equals(Object) - Methode in Datensatzklasse de.edux.ml.nn.network.api.Dataset
-
Gibt an, ob ein anderes Objekt diesem gleich ("equal to") ist.
- equals(Object) - Methode in Datensatzklasse de.edux.ml.randomforest.Sample
-
Gibt an, ob ein anderes Objekt diesem gleich ("equal to") ist.
- evaluate(double[][], double[][]) - Methode in Schnittstelle de.edux.api.Classifier
-
Evaluates the model's performance against the provided test inputs and targets.
- evaluate(double[][], double[][]) - Methode in Klasse de.edux.ml.decisiontree.DecisionTree
- evaluate(double[][], double[][]) - Methode in Klasse de.edux.ml.knn.KnnClassifier
- evaluate(double[][], double[][]) - Methode in Schnittstelle de.edux.ml.nn.network.api.IPerceptron
- evaluate(double[][], double[][]) - Methode in Klasse de.edux.ml.nn.network.MultilayerPerceptron
- evaluate(double[][], double[][]) - Methode in Klasse de.edux.ml.randomforest.RandomForest
- evaluate(double[][], double[][]) - Methode in Klasse de.edux.ml.svm.SupportVectorMachine
- evaluate(double[][], int[]) - Methode in Schnittstelle de.edux.ml.svm.ISupportVectorMachine
F
- FAST - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.ResizeQuality
- featureSamples() - Methode in Datensatzklasse de.edux.ml.randomforest.Sample
-
Gibt den Wert für die Datensatzkomponente
featureSamples
zurück. - fileName() - Methode in Datensatzklasse de.edux.augmentation.io.ImageWithName
-
Gibt den Wert für die Datensatzkomponente
fileName
zurück. - FlippingAugmentation - Klasse in de.edux.augmentation.effects
-
This class provides an augmentation that randomly flips an image either horizontally or vertically.
- FlippingAugmentation() - Konstruktor für Klasse de.edux.augmentation.effects.FlippingAugmentation
G
- getClassMap() - Methode in Klasse de.edux.data.provider.DataProcessor
- getClassMap() - Methode in Schnittstelle de.edux.data.provider.Dataset
- getColumnDataOf(int) - Methode in Klasse de.edux.data.provider.DataProcessor
- getColumnDataOf(int) - Methode in Schnittstelle de.edux.data.provider.Dataset
- getDataset() - Methode in Schnittstelle de.edux.data.provider.DataPostProcessor
-
Retrieves the processed dataset as a list of string arrays.
- getDataset() - Methode in Klasse de.edux.data.provider.DataProcessor
- getFeatureImportance() - Methode in Schnittstelle de.edux.ml.decisiontree.IDecisionTree
-
Returns the feature importance of the decision tree.
- getFeatureImportances() - Methode in Klasse de.edux.ml.decisiontree.DecisionTree
- getImputation() - Methode in Enum-Klasse de.edux.functions.imputation.ImputationStrategy
-
Retrieves the
IImputationStrategy
implementation associated with the imputation strategy. - getInputs(List<String[]>, int[]) - Methode in Klasse de.edux.data.provider.DataProcessor
- getInputs(List<String[]>, int[]) - Methode in Schnittstelle de.edux.data.provider.Dataset
- getScaleX() - Methode in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- getScaleY() - Methode in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- getShearX() - Methode in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- getShearY() - Methode in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- getTargets(List<String[]>, int) - Methode in Klasse de.edux.data.provider.DataProcessor
- getTargets(List<String[]>, int) - Methode in Schnittstelle de.edux.data.provider.Dataset
- getTestFeatures(int[]) - Methode in Klasse de.edux.data.provider.DataProcessor
- getTestFeatures(int[]) - Methode in Schnittstelle de.edux.data.provider.Dataset
- getTestLabels(int) - Methode in Klasse de.edux.data.provider.DataProcessor
- getTestLabels(int) - Methode in Schnittstelle de.edux.data.provider.Dataset
- getTrainFeatures(int[]) - Methode in Klasse de.edux.data.provider.DataProcessor
- getTrainFeatures(int[]) - Methode in Schnittstelle de.edux.data.provider.Dataset
- getTrainLabels(int) - Methode in Klasse de.edux.data.provider.DataProcessor
- getTrainLabels(int) - Methode in Schnittstelle de.edux.data.provider.Dataset
- getTranslateX() - Methode in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- getTranslateY() - Methode in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
H
- hashCode() - Methode in Datensatzklasse de.edux.augmentation.io.ImageWithName
-
Gibt einen Hashcodewert für diese Objekt zurück.
- hashCode() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt einen Hashcodewert für diese Objekt zurück.
- hashCode() - Methode in Datensatzklasse de.edux.ml.nn.network.api.Dataset
-
Gibt einen Hashcodewert für diese Objekt zurück.
- hashCode() - Methode in Datensatzklasse de.edux.ml.randomforest.Sample
-
Gibt einen Hashcodewert für diese Objekt zurück.
- HE - Enum-Konstante in Enum-Klasse de.edux.functions.initialization.Initialization
-
He initialization strategy for weights.
- hiddenLayerActivationFunction() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
hiddenLayerActivationFunction
zurück. - hiddenLayersSize() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
hiddenLayersSize
zurück. - hiddenLayerWeightInitialization() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
hiddenLayerWeightInitialization
zurück. - HINGE_LOSS - Enum-Konstante in Enum-Klasse de.edux.functions.loss.LossFunction
I
- IAugmentationImageReader - Schnittstelle in de.edux.augmentation.io
- IDataReader - Schnittstelle in de.edux.data.reader
- IDecisionTree - Schnittstelle in de.edux.ml.decisiontree
- IImputationStrategy - Schnittstelle in de.edux.functions.imputation
-
Defines a strategy interface for imputing missing values within a column of data.
- image() - Methode in Datensatzklasse de.edux.augmentation.io.ImageWithName
-
Gibt den Wert für die Datensatzkomponente
image
zurück. - ImageConsumer - Klasse in de.edux.augmentation.io
- ImageConsumer(BlockingQueue<ImageWithName>, AugmentationSequence, String) - Konstruktor für Klasse de.edux.augmentation.io.ImageConsumer
- ImageProcessingManager - Klasse in de.edux.augmentation.io
- ImageProcessingManager(String, int, AugmentationSequence, String) - Konstruktor für Klasse de.edux.augmentation.io.ImageProcessingManager
- ImageProducer - Klasse in de.edux.augmentation.io
-
Handles the production of images from a specified directory, queuing them for further processing.
- ImageProducer(BlockingQueue<ImageWithName>, String, int) - Konstruktor für Klasse de.edux.augmentation.io.ImageProducer
-
Constructs an ImageProducer with the specified queue, directory path, and number of consumers.
- ImageWithName - Datensatzklasse in de.edux.augmentation.io
- ImageWithName(BufferedImage, String) - Konstruktor für Datensatzklasse de.edux.augmentation.io.ImageWithName
-
Erstellt eine Instanz einer Datensatzklasse
ImageWithName
. - IMatrixArithmetic - Schnittstelle in de.edux.core.math
- IMatrixProduct - Schnittstelle in de.edux.core.math
-
The IMatrixProduct interface defines a method for multiplying two matrices.
- IMatrixVectorProduct - Schnittstelle in de.edux.core.math
-
The IMatrixVectorProduct interface specifies the operation for multiplying a matrix by a vector.
- imputation(int, ImputationStrategy) - Methode in Schnittstelle de.edux.data.provider.DataPostProcessor
-
Performs imputation on missing values in a specified column index using the provided imputation strategy.
- imputation(int, ImputationStrategy) - Methode in Klasse de.edux.data.provider.DataProcessor
- ImputationStrategy - Enum-Klasse in de.edux.functions.imputation
-
Enumerates the available imputation strategies for handling missing values in datasets.
- IncompatibleDimensionsException - Ausnahmeklasse in de.edux.util.math
- IncompatibleDimensionsException(String) - Konstruktor für Ausnahmeklasse de.edux.util.math.IncompatibleDimensionsException
- INeuron - Schnittstelle in de.edux.ml.nn.network.api
- Initialization - Enum-Klasse in de.edux.functions.initialization
-
Enumerates strategies for initializing weights in neural network layers, providing methods to apply these strategies to given weight arrays.
- inputSize() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
inputSize
zurück. - invertMatrix(double[][]) - Methode in Schnittstelle de.edux.util.math.MatrixOperations
-
Inverts the given matrix and returns the resulting matrix.
- IPerceptron - Schnittstelle in de.edux.ml.nn.network.api
- ISupportVectorMachine - Schnittstelle in de.edux.ml.svm
K
- KnnClassifier - Klasse in de.edux.ml.knn
-
The
KnnClassifier
class provides an implementation of the k-Nearest Neighbors algorithm for classification tasks. - KnnClassifier(int) - Konstruktor für Klasse de.edux.ml.knn.KnnClassifier
-
Initializes a new instance of
KnnClassifier
with specified k.
L
- LabelDimensionConverter - Klasse in de.edux.util
- LabelDimensionConverter() - Konstruktor für Klasse de.edux.util.LabelDimensionConverter
- labelSamples() - Methode in Datensatzklasse de.edux.ml.randomforest.Sample
-
Gibt den Wert für die Datensatzkomponente
labelSamples
zurück. - LEAKY_RELU - Enum-Konstante in Enum-Klasse de.edux.functions.activation.ActivationFunction
- learningRate() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
learningRate
zurück. - LEFT_TILT - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- LINEAR - Enum-Konstante in Enum-Klasse de.edux.ml.svm.SVMKernel
- loadDataSetFromCSV(File, char, boolean, int[], int) - Methode in Schnittstelle de.edux.data.provider.Dataloader
-
Loads a dataset from the specified CSV file, processes it, and returns a
DataProcessor
that is ready to be used for further operations such as data manipulation or analysis. - loadDataSetFromCSV(File, char, boolean, int[], int) - Methode in Klasse de.edux.data.provider.DataProcessor
- loadKernel() - Methode in Schnittstelle de.edux.core.math.matrix.cuda.CUDAKernelUser
- loadKernel() - Methode in Klasse de.edux.core.math.matrix.cuda.operations.CudaMatrixProduct
- loadKernel() - Methode in Klasse de.edux.core.math.matrix.cuda.operations.CudaMatrixVectorProduct
- lossFunction() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
lossFunction
zurück. - LossFunction - Enum-Klasse in de.edux.functions.loss
M
- MathMatrix - Klasse in de.edux.util.math
- MathMatrix() - Konstruktor für Klasse de.edux.util.math.MathMatrix
- MatrixArithmetic - Klasse in de.edux.core.math.matrix.parallel
- MatrixArithmetic() - Konstruktor für Klasse de.edux.core.math.matrix.parallel.MatrixArithmetic
- MatrixOperations - Schnittstelle in de.edux.util.math
-
Provides the classes necessary for performing matrix operations in machine learning.
- MatrixProduct - Klasse in de.edux.core.math.matrix.parallel.operations
- MatrixProduct() - Konstruktor für Klasse de.edux.core.math.matrix.parallel.operations.MatrixProduct
- MatrixVectorProduct - Klasse in de.edux.core.math.matrix.parallel.operations
- MatrixVectorProduct() - Konstruktor für Klasse de.edux.core.math.matrix.parallel.operations.MatrixVectorProduct
- MEAN_ABSOLUTE_ERROR - Enum-Konstante in Enum-Klasse de.edux.functions.loss.LossFunction
- MEAN_SQUARED_ERROR - Enum-Konstante in Enum-Klasse de.edux.functions.loss.LossFunction
- MODE - Enum-Konstante in Enum-Klasse de.edux.functions.imputation.ImputationStrategy
-
Imputation strategy that replaces missing values with the most frequently occurring value (mode) in the dataset column.
- ModeImputation - Klasse in de.edux.functions.imputation
-
Implements the
IImputationStrategy
interface to provide a mode value imputation. - ModeImputation() - Konstruktor für Klasse de.edux.functions.imputation.ModeImputation
- MonochromeAugmentation - Klasse in de.edux.augmentation.effects
-
Applies a monochrome filter to the image, converting it to grayscale.
- MonochromeAugmentation() - Konstruktor für Klasse de.edux.augmentation.effects.MonochromeAugmentation
- MultilayerPerceptron - Klasse in de.edux.ml.nn.network
-
The
MultilayerPerceptron
class represents a simple feedforward neural network, which consists of input, hidden, and output layers. - MultilayerPerceptron(NetworkConfiguration, double[][], double[][]) - Konstruktor für Klasse de.edux.ml.nn.network.MultilayerPerceptron
- multiply(double[][], double[]) - Methode in Schnittstelle de.edux.core.math.IMatrixVectorProduct
-
Multiplies a matrix by a vector and returns the result as a new vector.
- multiply(double[][], double[]) - Methode in Klasse de.edux.core.math.matrix.cuda.CudaMatrixArithmetic
- multiply(double[][], double[]) - Methode in Klasse de.edux.core.math.matrix.cuda.operations.CudaMatrixVectorProduct
- multiply(double[][], double[]) - Methode in Klasse de.edux.core.math.matrix.parallel.MatrixArithmetic
- multiply(double[][], double[]) - Methode in Klasse de.edux.core.math.matrix.parallel.operations.MatrixVectorProduct
- multiply(double[][], double[][]) - Methode in Schnittstelle de.edux.core.math.IMatrixProduct
-
Multiplies two matrices together and returns the result as a new matrix.
- multiply(double[][], double[][]) - Methode in Klasse de.edux.core.math.matrix.cuda.CudaMatrixArithmetic
- multiply(double[][], double[][]) - Methode in Klasse de.edux.core.math.matrix.cuda.operations.CudaMatrixProduct
- multiply(double[][], double[][]) - Methode in Klasse de.edux.core.math.matrix.parallel.MatrixArithmetic
- multiply(double[][], double[][]) - Methode in Klasse de.edux.core.math.matrix.parallel.operations.MatrixProduct
- multiplyMatrices(double[][], double[][]) - Methode in Schnittstelle de.edux.util.math.ConcurrentMatrixMultiplication
-
Multiplies two matrices and returns the resulting matrix.
- multiplyMatrices(double[][], double[][]) - Methode in Klasse de.edux.util.math.MathMatrix
N
- NetworkConfiguration - Datensatzklasse in de.edux.ml.nn.config
- NetworkConfiguration(int, List<Integer>, int, double, int, ActivationFunction, ActivationFunction, LossFunction, Initialization, Initialization) - Konstruktor für Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Erstellt eine Instanz einer Datensatzklasse
NetworkConfiguration
. - NoiseInjectionAugmentation - Klasse in de.edux.augmentation.effects
- NoiseInjectionAugmentation(int) - Konstruktor für Klasse de.edux.augmentation.effects.NoiseInjectionAugmentation
- normalize() - Methode in Schnittstelle de.edux.data.provider.DataPostProcessor
-
Normalizes the dataset.
- normalize() - Methode in Klasse de.edux.data.provider.DataProcessor
- normalize(List<String[]>) - Methode in Klasse de.edux.data.provider.DataNormalizer
- normalize(List<String[]>) - Methode in Schnittstelle de.edux.data.provider.Normalizer
- Normalizer - Schnittstelle in de.edux.data.provider
O
- outputLayerActivationFunction() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
outputLayerActivationFunction
zurück. - outputLayerWeightInitialization() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
outputLayerWeightInitialization
zurück. - outputSize() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt den Wert für die Datensatzkomponente
outputSize
zurück.
P
- performImputation(String[]) - Methode in Klasse de.edux.functions.imputation.AverageImputation
-
Performs average value imputation on the provided dataset column.
- performImputation(String[]) - Methode in Schnittstelle de.edux.functions.imputation.IImputationStrategy
-
Performs imputation on the provided column data array.
- performImputation(String[]) - Methode in Klasse de.edux.functions.imputation.ModeImputation
-
Performs mode value imputation on the provided dataset column.
- performListWiseDeletion() - Methode in Schnittstelle de.edux.data.provider.DataPostProcessor
-
Performs list-wise deletion on the dataset.
- performListWiseDeletion() - Methode in Klasse de.edux.data.provider.DataProcessor
- Perspective - Enum-Klasse in de.edux.augmentation.effects.geomentry
-
Defines common perspective transformations that can be applied to images.
- PerspectiveTransformationsAugmentation - Klasse in de.edux.augmentation.effects
-
Applies a perspective transformation to an image using affine transformations.
- PerspectiveTransformationsAugmentation(double, double, double, double, double, double) - Konstruktor für Klasse de.edux.augmentation.effects.PerspectiveTransformationsAugmentation
-
Constructs a PerspectiveTransformationsAugmentation with custom transformation settings.
- PerspectiveTransformationsAugmentation(Perspective) - Konstruktor für Klasse de.edux.augmentation.effects.PerspectiveTransformationsAugmentation
-
Constructs a PerspectiveTransformationsAugmentation with predefined perspective settings.
- predict(double[]) - Methode in Schnittstelle de.edux.api.Classifier
-
Predicts the output for a single set of input values.
- predict(double[]) - Methode in Klasse de.edux.ml.decisiontree.DecisionTree
- predict(double[]) - Methode in Klasse de.edux.ml.knn.KnnClassifier
- predict(double[]) - Methode in Schnittstelle de.edux.ml.nn.network.api.IPerceptron
- predict(double[]) - Methode in Klasse de.edux.ml.nn.network.MultilayerPerceptron
- predict(double[]) - Methode in Klasse de.edux.ml.randomforest.RandomForest
- predict(double[]) - Methode in Schnittstelle de.edux.ml.svm.ISupportVectorMachine
- predict(double[]) - Methode in Klasse de.edux.ml.svm.SupportVectorMachine
- predict(double[]) - Methode in Klasse de.edux.ml.svm.SVMModel
- processImages() - Methode in Klasse de.edux.augmentation.io.ImageProcessingManager
Q
- QUALITY - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.ResizeQuality
R
- RandomDeleteAugmentation - Klasse in de.edux.augmentation.effects
-
This class provides an augmentation that randomly deletes a portion of the image.
- RandomDeleteAugmentation(int, int, int) - Konstruktor für Klasse de.edux.augmentation.effects.RandomDeleteAugmentation
-
Constructs a RandomDeleteAugmentation with specified parameters.
- RandomForest - Klasse in de.edux.ml.randomforest
-
RandomForest Classifier RandomForest is an ensemble learning method, which constructs a multitude of decision trees at training time and outputs the class that is the mode of the classes output by individual trees, or a mean prediction of the individual trees (regression).
- RandomForest(int, int, int, int, int, int) - Konstruktor für Klasse de.edux.ml.randomforest.RandomForest
- readFile(File, char) - Methode in Klasse de.edux.data.reader.CSVIDataReader
- readFile(File, char) - Methode in Schnittstelle de.edux.data.reader.IDataReader
- readImage(Path) - Statische Methode in Klasse de.edux.augmentation.core.AbstractAugmentation
- readImagePathsAsStream(String) - Methode in Klasse de.edux.augmentation.io.AugmentationImageReader
-
Reads all image file paths from a specified directory and returns them as a stream.
- readImagePathsAsStream(String) - Methode in Schnittstelle de.edux.augmentation.io.IAugmentationImageReader
- RELU - Enum-Konstante in Enum-Klasse de.edux.functions.activation.ActivationFunction
- resize(BufferedImage) - Methode in Klasse de.edux.augmentation.effects.ResizeAugmentation
- ResizeAugmentation - Klasse in de.edux.augmentation.effects
-
Provides functionality to resize images to a specified width and height.
- ResizeAugmentation(double) - Konstruktor für Klasse de.edux.augmentation.effects.ResizeAugmentation
-
Creates a ResizeAugmentation instance with a specified scale factor which ensures that the image maintains its aspect ratio after the transformation.
- ResizeAugmentation(double, ResizeQuality) - Konstruktor für Klasse de.edux.augmentation.effects.ResizeAugmentation
-
Creates a ResizeAugmentation instance with the specified scaleFactor and resizing quality.
- ResizeAugmentation(int, int) - Konstruktor für Klasse de.edux.augmentation.effects.ResizeAugmentation
-
Creates a ResizeAugmentation instance with the specified target width and height.
- ResizeAugmentation(int, int, ResizeQuality) - Konstruktor für Klasse de.edux.augmentation.effects.ResizeAugmentation
-
Creates a ResizeAugmentation instance with the specified target width, height, and resizing quality.
- ResizeQuality - Enum-Klasse in de.edux.augmentation.effects
- RIGHT_TILT - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- run() - Methode in Klasse de.edux.augmentation.io.ImageConsumer
- run() - Methode in Klasse de.edux.augmentation.io.ImageProducer
-
The run method invoked when the thread starts.
- run(String, int, String) - Methode in Schnittstelle de.edux.augmentation.core.AugmentationSequence
-
Executes the augmentation sequence on a set of images in a specified directory.
- run(String, int, String) - Methode in Klasse de.edux.augmentation.core.CompositeAugmentationSequence
S
- Sample - Datensatzklasse in de.edux.ml.randomforest
- Sample(double[][], double[][]) - Konstruktor für Datensatzklasse de.edux.ml.randomforest.Sample
-
Erstellt eine Instanz einer Datensatzklasse
Sample
. - shuffle() - Methode in Schnittstelle de.edux.data.provider.DataPostProcessor
-
Shuffles the dataset randomly.
- shuffle() - Methode in Klasse de.edux.data.provider.DataProcessor
- SIGMOID - Enum-Konstante in Enum-Klasse de.edux.functions.activation.ActivationFunction
- SOFTMAX - Enum-Konstante in Enum-Klasse de.edux.functions.activation.ActivationFunction
- split(double) - Methode in Schnittstelle de.edux.data.provider.DataPostProcessor
-
Splits the dataset into two separate datasets according to the specified split ratio.
- split(double) - Methode in Klasse de.edux.data.provider.DataProcessor
- SQUARED_HINGE_LOSS - Enum-Konstante in Enum-Klasse de.edux.functions.loss.LossFunction
- SQUEEZE_HORIZONTAL - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- SQUEEZE_VERTICAL - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- STRETCH_HORIZONTAL - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- STRETCH_VERTICAL - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- subtractMatrices(double[][], double[][]) - Methode in Schnittstelle de.edux.util.math.MatrixOperations
-
Subtracts matrix b from matrix a and returns the resulting matrix.
- SupportVectorMachine - Klasse in de.edux.ml.svm
-
The
SupportVectorMachine
class is an implementation of a Support Vector Machine (SVM) classifier, utilizing the one-vs-one strategy for multi-class classification. - SupportVectorMachine(SVMKernel, double) - Konstruktor für Klasse de.edux.ml.svm.SupportVectorMachine
-
Constructs a new instance of SupportVectorMachine with a specified kernel and regularization parameter.
- SVMKernel - Enum-Klasse in de.edux.ml.svm
- SVMModel - Klasse in de.edux.ml.svm
- SVMModel(SVMKernel, double) - Konstruktor für Klasse de.edux.ml.svm.SVMModel
T
- TANH - Enum-Konstante in Enum-Klasse de.edux.functions.activation.ActivationFunction
- testData() - Methode in Datensatzklasse de.edux.ml.nn.network.api.Dataset
-
Gibt den Wert für die Datensatzkomponente
testData
zurück. - TOP_LEFT_CORNER_TILT - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- TOP_RIGHT_CORNER_TILT - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- TOP_TILT - Enum-Konstante in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
- toString() - Methode in Datensatzklasse de.edux.augmentation.io.ImageWithName
-
Gibt eine Zeichenfolgendarstellung dieser Datensatzklasse zurück.
- toString() - Methode in Datensatzklasse de.edux.ml.nn.config.NetworkConfiguration
-
Gibt eine Zeichenfolgendarstellung dieser Datensatzklasse zurück.
- toString() - Methode in Datensatzklasse de.edux.ml.nn.network.api.Dataset
-
Gibt eine Zeichenfolgendarstellung dieser Datensatzklasse zurück.
- toString() - Methode in Datensatzklasse de.edux.ml.randomforest.Sample
-
Gibt eine Zeichenfolgendarstellung dieser Datensatzklasse zurück.
- train(double[][], double[][]) - Methode in Schnittstelle de.edux.api.Classifier
-
Trains the model using the provided training inputs and targets.
- train(double[][], double[][]) - Methode in Klasse de.edux.ml.decisiontree.DecisionTree
- train(double[][], double[][]) - Methode in Klasse de.edux.ml.knn.KnnClassifier
- train(double[][], double[][]) - Methode in Schnittstelle de.edux.ml.nn.network.api.IPerceptron
- train(double[][], double[][]) - Methode in Klasse de.edux.ml.nn.network.MultilayerPerceptron
- train(double[][], double[][]) - Methode in Klasse de.edux.ml.randomforest.RandomForest
- train(double[][], double[][]) - Methode in Klasse de.edux.ml.svm.SupportVectorMachine
- train(double[][], int[]) - Methode in Schnittstelle de.edux.ml.svm.ISupportVectorMachine
- train(double[][], int[]) - Methode in Klasse de.edux.ml.svm.SVMModel
- trainData() - Methode in Datensatzklasse de.edux.ml.nn.network.api.Dataset
-
Gibt den Wert für die Datensatzkomponente
trainData
zurück. - transposeMatrix(double[][]) - Methode in Schnittstelle de.edux.util.math.MatrixOperations
-
Transposes the given matrix and returns the resulting matrix.
U
- updateWeights(double[], double) - Methode in Schnittstelle de.edux.ml.nn.network.api.INeuron
V
- valueOf(String) - Statische Methode in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
-
Gibt die Enum-Konstante dieser Klasse mit dem angegebenen Namen zurück.
- valueOf(String) - Statische Methode in Enum-Klasse de.edux.augmentation.effects.ResizeQuality
-
Gibt die Enum-Konstante dieser Klasse mit dem angegebenen Namen zurück.
- valueOf(String) - Statische Methode in Enum-Klasse de.edux.functions.activation.ActivationFunction
-
Gibt die Enum-Konstante dieser Klasse mit dem angegebenen Namen zurück.
- valueOf(String) - Statische Methode in Enum-Klasse de.edux.functions.imputation.ImputationStrategy
-
Gibt die Enum-Konstante dieser Klasse mit dem angegebenen Namen zurück.
- valueOf(String) - Statische Methode in Enum-Klasse de.edux.functions.initialization.Initialization
-
Gibt die Enum-Konstante dieser Klasse mit dem angegebenen Namen zurück.
- valueOf(String) - Statische Methode in Enum-Klasse de.edux.functions.loss.LossFunction
-
Gibt die Enum-Konstante dieser Klasse mit dem angegebenen Namen zurück.
- valueOf(String) - Statische Methode in Enum-Klasse de.edux.ml.svm.SVMKernel
-
Gibt die Enum-Konstante dieser Klasse mit dem angegebenen Namen zurück.
- values() - Statische Methode in Enum-Klasse de.edux.augmentation.effects.geomentry.Perspective
-
Gibt ein Array mit den Konstanten dieser Enum-Klasse in der Reihenfolge ihrer Deklaration zurück.
- values() - Statische Methode in Enum-Klasse de.edux.augmentation.effects.ResizeQuality
-
Gibt ein Array mit den Konstanten dieser Enum-Klasse in der Reihenfolge ihrer Deklaration zurück.
- values() - Statische Methode in Enum-Klasse de.edux.functions.activation.ActivationFunction
-
Gibt ein Array mit den Konstanten dieser Enum-Klasse in der Reihenfolge ihrer Deklaration zurück.
- values() - Statische Methode in Enum-Klasse de.edux.functions.imputation.ImputationStrategy
-
Gibt ein Array mit den Konstanten dieser Enum-Klasse in der Reihenfolge ihrer Deklaration zurück.
- values() - Statische Methode in Enum-Klasse de.edux.functions.initialization.Initialization
-
Gibt ein Array mit den Konstanten dieser Enum-Klasse in der Reihenfolge ihrer Deklaration zurück.
- values() - Statische Methode in Enum-Klasse de.edux.functions.loss.LossFunction
-
Gibt ein Array mit den Konstanten dieser Enum-Klasse in der Reihenfolge ihrer Deklaration zurück.
- values() - Statische Methode in Enum-Klasse de.edux.ml.svm.SVMKernel
-
Gibt ein Array mit den Konstanten dieser Enum-Klasse in der Reihenfolge ihrer Deklaration zurück.
W
- weightInitialization(int, double[]) - Methode in Enum-Klasse de.edux.functions.initialization.Initialization
X
- XAVIER - Enum-Konstante in Enum-Klasse de.edux.functions.initialization.Initialization
-
Enumerates strategies for initializing weights in neural network layers, providing methods to apply these strategies to given weight arrays.
Alle Klassen und Schnittstellen|Alle Packages|Serialisierte Form